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Abstract

A method is presented that ascribes proper statistical variability to simulations that 
are derived from longer-duration measurements. This method is applicable to 
simulations of either real-value or integer-value data. An example is presented that 
demonstrates the applicability of this technique to the synthesis of gamma-ray 
spectra. 
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1. INTRODUCTION
Simulations provide an efficient method for testing analysis algorithms and evaluating the 
performance of various types of detectors. Computational methods also enable isolation of 
variables for parametric studies in ways that may not be feasible when evaluations are performed 
using only measured data. Although simulation of statistical uncertainties is trivial when the 
original data does not exhibit statistical variations, uncertainties in the basis data propagate to 
samples that are derived from measurements. This issue may also pertain to computational 
methods based on Monte Carlo calculations, which also exhibit statistical uncertainties.

In order to derive representative uncertainty distributions, the true-mean of the basis data must be 
estimated. Computation of the output from a detector, based on an analytic model, provides one 
method for estimating the true-mean values without statistical uncertainty. However, this 
approach has its own shortcomings because the analytic model may exhibit computational errors 
that exceed statistical uncertainties in the measurement. The basis data may also be smoothed to 
reduce statistical uncertainties, but smoothing may introduce artifacts that are difficult to 
quantify. An alternative approach is to use a long-duration measurement as a basis for generating 
statistical samples with shorter measurement times. Application of this method generally 
assumes that the long-duration data are representative of true-mean values, and Poisson statistics 
are applied directly to generate short-duration simulations. However, this approach suffers when 
statistical samples are generated with measurement times approaching the time basis of the long-
duration measurement.

Accordingly, this document describes a method for using measured data to create simulations 
that reflect the correct statistical uncertainties. Although examples are presented for the synthesis 
of gamma-ray spectra, the method is suitable for any type of data that exhibits statistical 
uncertainty consistent with Poisson distributions.

2. THEORY
If true-mean values of the basis data are known, statistical samples can be obtained by extracting 
random values from a Poisson distribution. The process of obtaining a random sample from this 
distribution can be represented as the application of a Poisson operator that is based on a true-
mean value, µ, as follows: 

Sample = Pois(μ) (1)

The true-mean value is not known precisely if the data is obtained from a measurement. The 
uncertainty of the true-mean can be reduced by collecting data with a long measurement that is 
long relative to the simulation. Scaled values of the basis data represent the best estimate for 
true-mean values associated with shorter measurement times. Accordingly, a statistical sample, 
y', of the original datum, y, can be approximated as follows:

y' = Pois(sy) (2)

where s is a scale parameter that is equal to the ratio of the measurement time for the statistical 
sample to the measurement time for the original measurement.

Although the impact of statistical uncertainty in the original data is reduced when s is small, 
uncertainties still contribute to the total variability of the synthetic data. If we assume that an 
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unbiased statistical variability relative to the mean (p) can be derived, the statistical sample can 
be expressed according to Eq. (3).

y' = sy + p (3)

Let us hypothesize that p can be expressed according to the following relationship:

pn =∝ [Pois(sy) - sy]n (4)

Substitution of Eq. (4) into Eq. (3) yields the following:

y' = sy + ∝ 1 n[Pois(sy) - sy] (5)

Equation (5) is identical to Eq. (2) if =1, which is a good approximation when s is very small 
because the statistical uncertainty of the original data is negligible relative to the uncertainty in 
the statistical sample. Therefore =1 is the proper value in the limit s<<1. At the other extreme, 
no additional uncertainty should be added if the measurement is used to derive a sample with the 
same measurement time as the original data. Hence, =1 at the limit s=1. These limits are 
achieved if the following relationship pertains:

∝= 1 - s (6)

So Eq. (5) reduces the following representation:

y' = sy + (1 - s)1 n[Pois(sy) - sy] (7)

The only unknown in Eq. (7) is the value of n that produces statistical samples without biasing 
the data. Insight suggests the proper value of n is 2 because statistical uncertainties are normally 
added in quadrature, but this assumption and the hypothesis that Eq. (4) pertains must be proven. 
Furthermore, sy is only an estimate of the mean as opposed to a true-mean, so derived statistical 
samples cannot be absolutely correct under all conditions. 

3. VALIDATION AND ADJUSTMENTS FOR INTEGER DATA

3.1 Computational Validation
The true-mean of a measurement cannot be known exactly, so a computational approach 
provides the best way to evaluate the suitability of the derivation in Section 2. In particular, the 
proper value of parameter n in Eq. (7) must be determined. A series of measurements of y can be 
simulated by extracting statistical samples from a Poisson distribution based on the asserted true-
mean of the basis data, t.

Computation of reduced chi-square (r
2) values provides a means for validating assumptions. 

The value of r
2, which is defined in Eq. (8), is approximately equal to unity if the data vary 

according to a Poisson distribution. 
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2
r =

1
n

n

∑
i = 1

(st - y'i)
2

st
(8)

The true-mean of shorter-duration simulated data sets is equal to st, which appears in the 
denominator in this expression because it is equal to variance. One million simulations were 
performed for each of several values of parameters t and s. Calculations were repeated for   1 
and for values of n equal to 1 and 2. This provided three sets of statistical metrics that can be 
used to determine the value of n and to evaluate the suitability of the proposed sampling 
approach. Figure 1 compares values of r

2 as a function of s and t for three assumptions 
regarding parameters  and n.

  1: Statistical uncertainty in the original data set from which shorter-duration measurements 
are simulated is neglected with =1, so values of r

2 tend to exceed unity when the s is 
large.

n=2: The variability of the simulated data is consistent with statistical uncertainties, so the 
value of r

2 is approximately equal to unity for all values of t and s.

n=1: The variability of the simulated data is less than statistical uncertainties.  
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Figure 1. Value of r
2 for the simulated data, y', as a function of the scale parameter, s, 

and the true-mean values of the basis data, t.

The statistical metrics presented in Figure 1 show that simulations based on Eq. (7) are consistent 
with Poisson statistics when n=2. The fact that values of r

2 are approximately equal to unity for 
all values of s and t also demonstrates that the underlying assumptions are valid.
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3.2 Adjustments for Integer-Value Simulations
The approach described in Section 3.1 is not applicable to all simulations because the values of y' 
represent floating point numbers whereas measurements often record integer values. The process 
of rounding data to integer values introduces additional uncertainties that tend to increase 
variability relative to the mean. This bias can be addressed by reducing the variability of the 
parameter p in Eq. (3) to compensate for the introduction of round-off errors. The corrected 
value, pc, should be related to the statistical component and the component derived from round-
off error, r, as follows: 

pc
2 = p2 - σr

2 (9)

This relationship leads to the conclusion that no additional uncertainty is required when p<r 
because the round-off error exceeds the statistical uncertainty. When the average statistical 
uncertainty exceeds the round-off error (i.e., sy>r), the ratio of pc to p can be estimated as 
follows:

pc

p
=

sy - σr
2

sy
(9)

When the simulated integer values represented as Int(y') are much larger than 1, the average 
round-off error is equal to 0.25 (this corresponds to the limit sy>>1). However, Int(y') is 
generally equal to either 0 or 1 in the limit sy<<1, so the round-off errors are either equal to sy or 
(1-sy), respectively. The average probability of obtaining 0 is equal to (1-sy) and the average 
probability of obtaining 1 is equal to sy in this limit. Accordingly, the estimated uncertainty 
derived from round-off error in the limit sy<<1 is given by the following equation:

σr = [sy(1 - sy)]2 + [(1 - sy)sy]2 = 2 sy(1 - sy) (10)

Compensation for round-off errors is challenging when sy  1 because approximations do not 
apply for all values of sy. Several methods for estimation of round-off errors in the intermediate 
regime were explored. The best results were obtained by simply declaring that r = 0.5 in the 
range 0.2 < sy < 2. Although the average round-off error must be less than 0.5, declaring that 
r = 0.5 partially compensates for the fact that round-off errors may exceed estimated statistical 
deviations when sy  1, which imposes lower bounds for the deviations that are applied when 
data are scaled to simulate shorter-duration measurements. Eq. (10) is applied for sy<0.2 and 
r = 0.25 for sy>2.

The dashed curves in Figure 2 show average values of r
2 that are obtained when simulations of 

y' are rounded to the nearest integer. The solid curves display results that are obtained by the 
method described in this section for simulating integer data, which produces results that are more 
consistent with Poisson variability. Even after applying the corrections, values of r

2 tend to 
exceed unity by a small amount due to deviation minima that are imposed by round-off errors. 
Round-off errors are negligible relative to statistical uncertainty for large true-mean values, so 
r

2 is approximately equal to unity regardless of whether the compensation for round-off error is 
applied.
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Figure 2. Value of r
2 for simulated integer data, Int(y'), as a function of the scale 

parameter, s, and the true-mean values of the basis data, t.

4. SYNTHESIS OF GAMMA RAY SPECTRA
The main objective of work described in this document is to enable accurate simulation of 
gamma-ray spectra based on longer-duration measurements. The simulated spectra should 
exhibit statistical variability that is consistent with Poisson statistics. As expected, simulations 
are correlated1 with the basis data and with each other for values of s exceeding about 0.1 
because the basis data are applied to represent true-means of the distributions. However, 
synthesized spectra should exhibit the proper variability with respect to simulations derived from 
independent basis spectra and spectra that are derived from calculations1. Numerous simulations, 
which were performed as part of this evaluation, demonstrated that r

2 is approximately equal to 
1 when spectra are compared. Figure 3 compares two integer spectra that were derived from 
statistically independent basis spectra. A scale factor of 0.5 was applied to generate these 50-
second spectra from two 100-second basis spectra. Values of r

2 ranged from 0.9 to 1.1 in these 
simulations without an obvious bias relative to a mean value of 1.0.

1 This is evidenced by values of r
2 that are consistently less than 1.
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Figure 3. Simulations that were derived from statistically independent, 100-second 
background simulations with s=0.5 exhibit differences that are consistent with 
Poisson statistics.
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